Analysis of the genes involved in thiocyanate oxidation during growth in continuous culture of the haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio thiocyanoxidans ARh 2T using transcriptomics

Journal Article (2017)
Author(s)

Tom Berben (Vrije Universiteit Amsterdam)

Cherel Balkema (Vrije Universiteit Amsterdam)

Dimitry Y. Sorokin (TU Delft - BT/Environmental Biotechnology, Russian Academy of Sciences)

Gerard Muyzer (Vrije Universiteit Amsterdam)

Research Group
BT/Environmental Biotechnology
Copyright
© 2017 Tom Berben, Cherel Balkema, Dimitry Y. Sorokin, Gerard Muyzer
DOI related publication
https://doi.org/10.1128/mSystems.00102-17
More Info
expand_more
Publication Year
2017
Language
English
Copyright
© 2017 Tom Berben, Cherel Balkema, Dimitry Y. Sorokin, Gerard Muyzer
Research Group
BT/Environmental Biotechnology
Issue number
6
Volume number
2
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Thiocyanate (N=C-S-) is a moderately toxic, inorganic sulfur compound. It occurs naturally as a by-product of the degradation of glucosinolatecontaining plants and is produced industrially in a number of mining processes. Currently, two pathways for the primary degradation of thiocyanate in bacteria are recognized, the carbonyl sulfide pathway and the cyanate pathway, of which only the former has been fully characterized. Use of the cyanate pathway has been shown in only 10 strains of Thioalkalivibrio, a genus of obligately haloalkaliphilic sulfuroxidizing Gammaproteobacteria found in soda lakes. So far, only the key enzyme in this reaction, thiocyanate dehydrogenase (TcDH), has been purified and studied. To gain a better understanding of the other genes involved in the cyanate pathway, we conducted a transcriptomics experiment comparing gene expression during the growth of Thioalkalivibrio thiocyanoxidans ARh 2T with thiosulfate with that during its growth with thiocyanate. Triplicate cultures were grown in continuous substratelimited mode, followed by transcriptome sequencing (RNA-Seq) of the total mRNA. Differential expression analysis showed that a cluster of genes surrounding the gene for TcDH were strongly upregulated during growth with thiocyanate. This cluster includes genes for putative copper uptake systems (copCD, ABC-type transporters), a putative electron acceptor (fccAB), and a two-component regulatory system (histidine kinase and a σ54-responsive Fis family transcriptional regulator). Additionally, we observed the increased expression of RuBisCO and some carboxysome shell genes involved in inorganic carbon fixation, as well as of aprAB, genes involved in sulfite oxidation through the reverse sulfidogenesis pathway.