The effect of uncertain bottom friction on estimates of tidal current power

More Info
expand_more

Abstract

Uncertainty affects estimates of the power potential of tidal currents, resulting in large ranges in values reported for a given site, such as the Pentland Firth, UK. We examine the role of bottom friction, one of the most important sources of uncertainty. We do so by using perturbation methods to find the leading-order effect of bottom friction uncertainty in theoretical models by Garrett & Cummins (2005 Proc. R. Soc. A 461, 2563-2572. (doi:10.1098/rspa.2005.1494); 2013 J. Fluid Mech. 714, 634-643. (doi:10.1017/jfm.2012.515)) and Vennell (2010 J. Fluid Mech. 671, 587-604. (doi:10.1017/S0022112010006191)), which consider quasi-steady flow in a channel completely spanned by tidal turbines, a similar channel but retaining the inertial term, and a circular turbine farm in laterally unconfined flow. We find that bottom friction uncertainty acts to increase estimates of expected power in a fully spanned channel, but generally has the reverse effect in laterally unconfined farms. The optimal number of turbines, accounting for bottom friction uncertainty, is lower for a fully spanned channel and higher in laterally unconfined farms. We estimate the typical magnitude of bottom friction uncertainty, which suggests that the effect on estimates of expected power lies in the range 25 to +30%, but is probably small for deep channels such as the Pentland Firth (5-10%). In such a channel, the uncertainty in power estimates due to bottom friction uncertainty remains considerable, and we estimate a relative standard deviation of 30%, increasing to 50% for small channels.