Niobium Carbide-Reinforced Ferrous Matrix Composites

An in situ Powder Metallurgy Approach

Journal Article (2025)
Author(s)

Isadora Schramm Deschamps (Universidade Federal de Santa Catarina)

D. dos Santos Avila (TU Delft - Team Maria Santofimia Navarro)

Enzo Vanzuita Piazera (Universidade Federal de Santa Catarina)

Aloisio Nelmo Nelmo Klein (Universidade Federal de Santa Catarina)

Research Group
Team Maria Santofimia Navarro
DOI related publication
https://doi.org/10.2497/jjspm.16D-T18-03
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Team Maria Santofimia Navarro
Volume number
72
Pages (from-to)
S1283-S1289
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This study focuses on developing a new processing route for ferrous matrix composites reinforced with niobium carbide by producing the reinforcement particles in situ using powder metallurgy. The aim is to improve the interfacial adhesion between matrix and reinforcement compared to traditional ex situ methods. Computational thermodynamics and kinetic analysis were used to optimize the raw materials and processing parameters. The raw materials are mixed, uniaxially pressed, and sintered in a tubular furnace. The study finds that liquid phase sintering improves densification but also leads to clustering, niobium-free regions, and abnormal grain growth. The optimal combination of porosity and microhardness is 16.5 ± 0.7% and 952 ± 82 HV0.05, respectively. Although there is room for further adjustments in processing, this study lays the groundwork for creating valuable materials using Brazilian strategic raw materials and technology.