Surface mine signature modeling for passive polarimetric IR sensors

More Info
expand_more

Abstract

A specular model has been used to predict the passive polarimetric infrared (IR) signature of surface-laid landmines. The signature depends on the temperature of the landmine and the sky radiance. The temperature of the landmine is measured using a thermocouple. The signature itself is measured using a polarimetric IR camera setup. The predictions are fit to the measurements using the refractive index as an optimization parameter. The obtained refractive indices of each landmine type are consistent, but for the PMN landmine much lower than determined in a previous indoor experiment.
Throughout the measurement day, the average landmine polarimetric signature was higher than the average background signature. Moreover the polarimetric signature appears to be a more robust indicator of the shape of the landmine's top surface than the normal IR signature.
A simulator of passive polarimetric imagery is also being developed. That work is based on a physical model for both the thermal and radiometric processes, and it includes a finite-element solution for the heat transfer problem, ray tracing to describe the incident sunlight and the effects of shadowing, and analytical models for the Mueller matrices of rough dielectric surfaces. Preliminary results from that model show substantial qualitative agreement with measured images. A specular model has been used to predict the passive polarimetric infrared (IR) signature of surface-laid landmines. The signature depends on the temperature of the landmine and the sky radiance. The temperature of the landmine is measured using a thermocouple. The signature itself is measured using a polarimetric IR camera setup. The predictions are fit to the measurements using the refractive index as an optimization parameter. The obtained refractive indices of each landmine type are consistent, but for the PMN landmine much lower than determined in a previous indoor experiment.
Throughout the measurement day, the average landmine polarimetric signature was higher than the average background signature. Moreover the polarimetric signature appears to be a more robust indicator of the shape of the landmine's top surface than the normal IR signature.
A simulator of passive polarimetric imagery is also being developed. That work is based on a physical model for both the thermal and radiometric processes, and it includes a finite-element solution for the heat transfer problem, ray tracing to describe the incident sunlight and the effects of shadowing, and analytical models for the Mueller matrices of rough dielectric surfaces. Preliminary results from that model show substantial qualitative agreement with measured images.