Effect of Unit-Cell Size on the Barely Visible Impact Damage in Woven Composites

Journal Article (2021)
Author(s)

Hassan M. El-Dessouky (Mansoura University, University of Sheffield, Galala University)

M. Saleh (TU Delft - Structural Integrity & Composites)

Ying Wang (The University of Manchester)

Mohamed S. Alotaibi (Galala University, Prince Sattam Bin Abdulaziz University)

Research Group
Structural Integrity & Composites
Copyright
© 2021 Hassan M. El-Dessouky, M. Saleh, Ying Wang, Mohamed S. Alotaibi
DOI related publication
https://doi.org/10.3390/app11052364
More Info
expand_more
Publication Year
2021
Language
English
Copyright
© 2021 Hassan M. El-Dessouky, M. Saleh, Ying Wang, Mohamed S. Alotaibi
Research Group
Structural Integrity & Composites
Issue number
5
Volume number
11
Pages (from-to)
1-15
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The effect of the weaving architecture and the z-binding yarns, for 2D and 3D woven composites on the low-velocity impact resistance of carbon fibre reinforced composites, is investigated and benchmarked against noncrimp fabric (NCF). Four architectures, namely: NCF, 2D plain weave (2D-PW), 3D orthogonal: plain (ORT-PW) and twill (ORT-TW), were subjected to 15 J impact using a 16 mm-diameter, 6.7 kg hemispherical impactor. Nondestructive techniques, including ultrasonic C-scanning, Digital Image Correlation (DIC) and X-ray computed tomography (CT) were used to map and quantify the size of the induced barely visible impact damage (BVID). The energy absorption of each architecture was correlated to the damage size: both in-plane and in-depth directions. The 3D architectures, regardless of their unit-cell size, demonstrated the highest impact resistance as opposed to 2D-PW and the NCF. X-ray CT segmentation showed the effect of the higher frequency of the z-binding yarns, in the ORT-PW case, in delamination and crack arresting even when compared to the other 3D architecture (ORT-TW). Among all the architectures, ORT-PW exhibited the highest damage resistance with the least damage size. This suggests that accurate design of the z-binding yarns’ path and more importantly its frequency in 3D woven architectures is essential for impact-resistant composite structures.

Files

License info not available