Detecting and analysing spontaneous oral cancer speech in the wild

Conference Paper (2020)
Author(s)

B.M. Halpern (Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis, Universiteit van Amsterdam, TU Delft - Multimedia Computing)

Rob van Son (Universiteit van Amsterdam, Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis)

Michiel van den Brekel (Universiteit van Amsterdam, Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis)

O.E. Scharenborg (TU Delft - Multimedia Computing)

Multimedia Computing
DOI related publication
https://doi.org/10.21437/Interspeech.2020-1598
More Info
expand_more
Publication Year
2020
Language
English
Multimedia Computing
Pages (from-to)
4826 - 4830

Abstract

Oral cancer speech is a disease which impacts more than half a million people worldwide every year. Analysis of oral cancer speech has so far focused on read speech. In this paper, we 1) present and 2) analyse a three-hour long spontaneous oral cancer speech dataset collected from YouTube. 3) We set baselines for an oral cancer speech detection task on this dataset. The analysis of these explainable machine learning baselines shows that sibilants and stop consonants are the most important indicators for spontaneous oral cancer speech detection.

No files available

Metadata only record. There are no files for this record.