The UMD property for musielak–orlicz spaces
N. Lindemulder (TU Delft - Analysis)
Mark Veraar (TU Delft - Analysis)
Ivan Yaroslavtsev (TU Delft - Analysis)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this paper we show that Musielak–Orlicz spaces are UMD spaces under the so-called Δ2 condition on the generalized Young function and its complemented function. We also prove that if the measure space is divisible, then a Musielak–Orlicz space has the UMD property if and only if it is reflexive. As a consequence we show that reflexive variable Lebesgue spaces Lp(·) are UMD spaces.