Dislocation impacts on iron/precipitate interfaces under shear loading

Journal Article (2016)
Author(s)

Astrid Elzas (TU Delft - (OLD) MSE-7)

B.J. Thijsse (TU Delft - (OLD) MSE-7)

Research Group
(OLD) MSE-7
DOI related publication
https://doi.org/10.1088/0965-0393/24/8/085006
More Info
expand_more
Publication Year
2016
Language
English
Research Group
(OLD) MSE-7
Issue number
8
Volume number
24

Abstract

Molecular dynamics simulations are performed to obtain a better understanding of the interactions of single dislocations and dislocation pile-ups with interfaces between iron and a precipitate. The material properties of the precipitate material and the iron-precipitate interaction are varied to understand the influence of interface structure, interface strength and precipitate stiffness on these interactions under shear loading. Our main findings are: (1) the interface adhesion is determined by a combination of the atomic interactions across the interface and the interface structure, (2) the interface structure is the key factor determining the dislocation accommodation capability of the interface: very strong semi-coherent interfaces do accommodate dislocations, while only very weak coherent interfaces are capable of doing this, and (3) a strong precipitate prevents slip transfer into the precipitate. Results of this study combined with those of a forthcoming study under tensile loading can be used to improve the description of interface decohesion in existing larger-scale models, such as discrete dislocation plasticity.

No files available

Metadata only record. There are no files for this record.