Removal of Hydrogen Peroxide Residuals and By-Product Bromate from Advanced Oxidation Processes by Granular Activated Carbon
Feifei Wang (TU Delft - Sanitary Engineering, Shanghai University)
Lu Zhang (Shanghai University)
Liangfu Wei (TU Delft - Sanitary Engineering)
Jan Peter van der Hoek (Waternet, TU Delft - Sanitary Engineering)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
During drinking water treatment, advanced oxidation process (AOP) with O3 and H2O2 may result in by-products, residual H2O2 and BrO3−. The water containing H2O2 and BrO3− often flows into subsequent granular activated carbon (GAC) filters. A concentrated H2O2 solution can be used as GAC modification reagent at 60 °C to improve its adsorption ability. However, whether low concentrations of H2O2 residuals from AOP can modify GAC, and the impact of H2O2 residuals on BrO3− removal by the subsequent GAC filter at ambient temperature, is unknown. This study evaluated the modification of GAC surface functional groups by residual H2O2 and its effect on BrO3− removal by GAC. Results showed that both H2O2 and BrO3− were effectively removed by virgin GAC, while pre-loaded and regenerated GACs removed H2O2 but not BrO3− anymore. At the ambient temperature 150 µmol/L H2O2 residuals consumed large amounts of functional groups, which resulted in the decrease of BrO3− removal by virgin GAC in the presence of H2O2 residuals. Redox reactions between BrO3− and surface functional groups played a dominant role in BrO3− removal by GAC, and only a small amount of BrO3− was removed by GAC adsorption. The higher the pH, the less BrO3− removal and the more H2O2 removal was observed.