Exploring users' perception of rating summary statistics
Ludovik Coba (Free University of Bozen-Bolzano)
Markus Zanker (Free University of Bozen-Bolzano)
Laurens Rook (TU Delft - Economics of Technology and Innovation)
Panagiotis Symeonidis (Free University of Bozen-Bolzano)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Collaborative filtering systems heavily depend on user feedback expressed in product ratings to select and rank items to recommend. These summary statistics of rating values carry two important descriptors about the assessed items, namely the total number of ratings and the mean rating value. In this study we explore how these two signals influence the decisions of online users based on choice-based conjoint experiments. Results show that users are more inclined to follow the mean indicator as opposed to the total number of ratings. Empirical results can serve as an input to developing algorithms that foster items with a, consequently, higher probability of choice based on their rating summarizations or their it explainability due to these ratings when ranking recommendations.