Scattering polarimetry enables correlative nerve fiber imaging and multimodal analysis
F.K. auf der Heiden (Forschungszentrum Jülich, TU Delft - ImPhys/Menzel group)
Markus Axer (University of Wuppertal, Forschungszentrum Jülich)
Katrin Amunts (Forschungszentrum Jülich, University Hospital Düsseldorf)
Miriam Menzel (TU Delft - ImPhys/Menzel group, Forschungszentrum Jülich)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Mapping the intricate network of nerve fibers is crucial for understanding brain function. Three-Dimensional Polarized Light Imaging (3D-PLI) and Computational Scattered Light Imaging (ComSLI) map dense nerve fibers in brain sections with micrometer resolution using visible light. 3D-PLI reconstructs 3D-fiber orientations, while ComSLI disentangles multiple directions per pixel. So far, these imaging techniques have been realized in separate setups. A combination within a single device would facilitate faster measurements, pixelwise mapping, cross-validation of fiber orientations, and leverage the advantages of each technique while mitigating their limitations. Here, we introduce the Scattering Polarimeter, a microscope that facilitates correlative large-area scans by integrating 3D-PLI and ComSLI measurements into a single system. Based on a Mueller polarimeter, it incorporates variable retarders and a large-area light source for direct and oblique illumination, enabling combined 3D-PLI and ComSLI measurements. Applied to human and vervet monkey brain sections, the Scattering Polarimeter generates results comparable to state-of-the-art 3D-PLI and ComSLI setups and creates a multimodal fiber direction map, integrating the robust fiber orientations obtained from 3D-PLI with fiber crossings from ComSLI. Furthermore, we discuss applications of the Scattering Polarimeter for unprecedented correlative and multimodal brain imaging.