Viscoelastic and dry-sliding wear properties of basalt fiber-reinforced composites based on a surface-modified graphene oxide/epoxy matrix
N. Jamali (TU Delft - Structural Integrity & Composites, University of Sistan and Baluchestan)
H. Khosravi (TU Delft - OLD Urban Compositions, University of Sistan and Baluchestan)
A. Rezvani (University of Sistan and Baluchestan)
E. Tohidlou (University of Sistan and Baluchestan)
J.A. Poulis (TU Delft - Adhesion Institute)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The current study focuses on the development of silanized graphene oxide reinforced basalt fiber/epoxy composites for enhanced tribological and viscoelastic properties. The modified-graphene oxide nanoplatelets were characterized using energy-dispersive X-ray spectroscopy, and Raman analyses. Pin-on-disk wear test and dynamic mechanical thermal analysis were conducted to determine the tribological and viscoelastic properties of the fabricated specimens with different silanized-graphene oxide loadings in the matrix (0–0.5 wt.% at a step of 0.1). The multiscale specimens were fabricated using the hand lay-up technique. The best silanized-graphene oxide loading for effectively enhancing the tribological properties was found to be 0.4 wt.%, whose wear rate and friction coefficient were 62% and 44%, respectively lower than those of the neat basalt/epoxy composite. The examination of the worn surfaces showed the enhanced basalt fiber/epoxy bonding in graphene oxide-reinforced specimen. From the results of dynamic mechanical thermal analysis, the specimen filled with 0.4 wt.% silanized-graphene oxide demonstrated the highest increase of 130% and 13.6℃ in the storage modulus and glass transition temperature as compared to the neat composite. This study indicated that the addition of silanized-graphene oxide considerably enhanced the tribological and viscoelastic properties of the fibrous composites.