Probabilistic wind power forecasting combining deep learning architectures

More Info
expand_more

Abstract

A series of probabilistic models were bench-marked during the European Energy Markets forecasting Competition 2020 to assess their relative accuracy in predicting aggregated Swedish wind power generation using as input historic weather forecasts from a numerical weather prediction model. In this paper, we report the results of one of these models which uses a deep learning approach integrating two architectures: (a) Convolutional Neural Network (CNN) LeNet-5 based architectrure; (b) Multi-Layer Perceptron (MLP) architecture -with two hidden layers-. These are concatenated into the Smooth Pinball Neural Network (SPNN) framework for quantile regression. Hyperparameters were optimised to produce the best model for every region. When tuned, the re-forecasts from the model performed favorably compared to other machine learning approaches and showed significant improvement on the original competition results, though failed to fully capture spatial patterns in certain cases when compared to other methods.

Files