Long term behavior of dichotomous stochastic differential equations in Hilbert spaces

Journal Article (2004)
Author(s)

OW van Gaans (TU Delft - Analysis)

Sjoerd M. Verduyn Lunel (External organisation)

Research Group
Analysis
DOI related publication
https://doi.org/10.1142/S0219199704001379
More Info
expand_more
Publication Year
2004
Research Group
Analysis
Issue number
3
Volume number
6
Pages (from-to)
349-376

Abstract

Abstract: We study existence of invariant measures for semilinear stochastic differential equations in Hilbert spaces. The noise is infinite dimensional, white in time, and colored in space. We show that if the equation is exponentially dichotomous in the sense that the semigroup generated by the linear part is hyperbolic and the Lipschitz constants of the nonlinearities are not too large, then existence of a solution with bounded mean squares implies existence of an invariant measure. Moreover, we show that every bounded solution satisfies a certain "Cauchy condition", which implies that its distributions converge weakly to a limit distribution.

Keywords: Coupling; dichotomy; Gronwall's lemma; hyperbolic semigroup; invariant measure; stochastic delay differential equation; uniform tightness
AMSC numbers: 34K50, 60H20, 93E15

No files available

Metadata only record. There are no files for this record.