Inverse Reinforcement Learning (IRL) in Presence of Risk and Uncertainty Related Cognitive Biases

To what extent can IRL learn rewards from expert demonstrations with loss and risk aversion?

More Info


A key issue in Reinforcement Learning (RL) research is the difficulty of defining rewards. Inverse Reinforcement Learning (IRL) is a technique that addresses this challenge by learning the rewards from expert demonstrations. In a realistic setting, expert demonstrations are collected from humans, and it is important to acknowledge that these demonstrations can deviate from rationality due to systematic biases known as cognitive biases. One group of cognitive biases, known as risk-sensitive cognitive biases, pertains to individuals' attitudes and behaviors towards risk and uncertainty. This paper investigates the extent to which IRL can learn from demonstrations that contain risk-sensitive cognitive biases such as loss aversion and risk aversion. Modelling biases using concepts from Prospect Theory and System 1 and 2 model and using Maximum Entropy IRL algorithm, this paper concludes that IRL can recreate similar solutions to experts but inferring the underlying motivations and the interactions between them is an intricate problem that requires novel approaches.