Unified correspondence and proof theory for strict implication

Journal Article (2016)
Author(s)

Minghui Ma (Southwestern University)

Z Zhao (TU Delft - Ethics & Philosophy of Technology)

DOI related publication
https://doi.org/10.1093/logcom/exw012
More Info
expand_more
Publication Year
2016
Language
English

Abstract

The unified correspondence theory for distributive lattice expansion logics (DLE-logics) is specialized to strict implication logics. As a consequence of a general semantic consevativity result, a wide range of strict implication logics can be conservatively extended to Lambek Calculi over the bounded distributive full non-associative Lambek calculus (BDFNL). Many strict implication sequents can be transformed into analytic rules employing one of the main tools of unified correspondence theory, namely (a suitably modified version of) the Ackermann lemma based algorithm ALBA. Gentzen-style cut-free sequent calculi for BDFNL and its extensions with analytic rules, which are transformed from strict implication sequents, are developed.

No files available

Metadata only record. There are no files for this record.