Feasibility Study of Self-Sufficient Solar Cooling Façade Applications in Different Warm Regions
A.I. Prieto (TU Delft - Design of Constrution)
U. Knaack (TU Delft - Design of Constrution)
Thomas Auer (Technische Universität München)
T klein (TU Delft - Building Product Innovation)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Small-scale systems and integrated concepts are currently being explored to promote the widespread application of solar cooling technologies in buildings. This article seeks to expand application possibilities by exploring the feasibility of solar cooling integrated façades, as decentralized self-sufficient cooling modules on different warm regions. The climate feasibility of solar electric and solar thermal concepts is evaluated based on solar availability and local cooling demands to be met by current technical possibilities. Numerical calculations are employed for the evaluation, considering statistical climate data; cooling demands per orientation from several simulated scenarios; and state-of-the-art efficiency values of solar cooling technologies, from the specialized literature. The main results show that, in general, warm-dry climates and east/west orientations are better suited for solar cooling façade applications, compared to humid regions and north/south orientations. Results from the base scenario show promising potential for solar thermal technologies, reaching a theoretical solar fraction of 100% in several cases. Application possibilities expand when higher solar array area and lower tilt angle on panels are considered, but these imply aesthetical and constructional constraints for façade design. Finally, recommendations are drafted considering prospects for the exploration of suitable technologies for each location, and façade design considerations for the optimization of the solar input per orientation.