Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning
Mostafa A. Rushdi (Kyushu University, Future University in Egypt)
Ahmad A. Rushdi (Sandia National Laboratories, California)
Tarek N. Dief (Kyushu University)
Amr M. Halawa (Kyushu University)
Shigeo Yoshida (Kyushu University, Research Institute for Applied Mechanics)
Roland Schmehl (TU Delft - Wind Energy)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Kites can be used to harvest wind energy at higher altitudes while using only a fraction of the material required for conventional wind turbines. In this work, we present the kite system of Kyushu University and demonstrate how experimental data can be used to train machine learning regression models. The system is designed for 7 kW traction power and comprises an inflatable wing with suspended kite control unit that is either tethered to a fixed ground anchor or to a towing vehicle to produce a controlled relative flow environment. A measurement unit was attached to the kite for data acquisition. To predict the generated tether force, we collected input–output samples from a set of well-designed experimental runs to act as our labeled training data in a supervised machine learning setting. We then identified a set of key input parameters which were found to be consistent with our sensitivity analysis using Pearson input–output correlation metrics. Finally, we designed and tested the accuracy of a neural network, among other multivariate regression models. The quality metrics of our models show great promise in accurately predicting the tether force for new input/feature combinations and potentially guide new designs for optimal power generation.