Spectral analysis of the Zig-Zag process on the torus

Master Thesis (2021)
Author(s)

S.F. Wiarda (TU Delft - Electrical Engineering, Mathematics and Computer Science)

Contributor(s)

G.N.J.C. Bierkens – Mentor (TU Delft - Statistics)

M.C. Veraar – Graduation committee member (TU Delft - Analysis)

Richard C. KRAAIJ – Graduation committee member (TU Delft - Applied Probability)

Faculty
Electrical Engineering, Mathematics and Computer Science
Copyright
© 2021 Sjoerd Wiarda
More Info
expand_more
Publication Year
2021
Language
English
Copyright
© 2021 Sjoerd Wiarda
Graduation Date
22-12-2021
Awarding Institution
Delft University of Technology
Programme
Applied Mathematics
Faculty
Electrical Engineering, Mathematics and Computer Science
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

In this thesis, we analyse the spectrum of the generator of the one-dimensional Zig-Zag process defined on the torus $\mathbb{T}$. This is a piecewise deterministic Markov process (PDMP) used in Monte Carlo Markov chain methods (MCMC) for sampling from a probability distribution and calculating integrals \cite{Rejectionfree}, \cite{ZigZag}, \cite{Bouncy}. We show for Lipschitz potentials $U$ and bounded refreshment rates $\lambda_0 \in L^{\infty}(\mathbb{T})$ that the spectral gap $\kappa = \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(\mathcal{L})\} \setminus \{0 \}$ of the associated $J$-self-adjoint generator $\mathcal{L}$ on $L^2(\mathbb{T} ,\nu)$ and $C(\mathbb{T} \times \{+1,-1\})$ is positive. Moreover, we give two lower bounds for $\kappa$ by making use of one of the Schur complements associated with a block operator that is unitarily equivalent to $\mathcal{L}$. In addition we show that the spectrum of $L^2(\mathbb{T} ,\nu)$ and $C(\mathbb{T} \times \{+1,-1\})$ are the same and that the generator defined on both spaces generates a contraction semigroup. Under the assumption of unimodality of the potential $U$ and a zero refreshment rate, we show that a vertical "asymptotic line" exists to which all of the eigenvalues converge. Furthermore, we show that a spectral mapping theorem exists where, due to the spectral line, the spectrum of the semigroup can become uncountable or countable depending on the time parameter of the semigroup $P(t)$ generated by $\mathcal{L}$. Lastly, we show that a discretisation of the spectrum generates a semigroup that converges uniformly on each bounded time interval to the semigroup of the Zig-Zag process and we use these discretisations to numerically analyse the behaviour of general potentials and refreshment rates.

Files

License info not available