A stochastic programming model for the optimal operation of unbalanced three-phase islanded microgrids

Journal Article (2020)
Author(s)

P.P. Vergara Barrios (University of Southern Denmark, University of Campinas)

Juan C. Lopez (University of Campinas)

Marcos J. Rider (University of Campinas)

Hamid R. Shaker (University of Southern Denmark)

Luiz da Silva (University of Campinas)

Bo Nørregaard Jørgensen (University of Southern Denmark)

Affiliation
External organisation
DOI related publication
https://doi.org/10.1016/j.ijepes.2019.105446
More Info
expand_more
Publication Year
2020
Language
English
Affiliation
External organisation
Volume number
115

Abstract

This paper presents a stochastic mixed-integer nonlinear programming (MINLP) model for the optimal operation of islanded microgrids in the presence of stochastic demands and renewable resources. In the proposed formulation, the microgrid is modeled as an unbalanced three-phase electrical distribution system comprising distributed generation (DG) units with droop control, battery systems (BSs) and wind turbines (WTs). The stochastic nature of the consumption and the renewable generation is considered through a scenario-based approach, which determines the optimal values of the decision variables that minimize the average operational cost of the microgrid. A set of efficient linearizations are used to transform the proposed MINLP model into an approximated convex model that can be solved via commercial solvers. In order to assess the effectiveness of the obtained solution, Monte Carlo simulations (MCS) are carried out. Results show that the proposed model considers the uncertainty while reducing the average operational costs and load curtailments, when compared with a deterministic model.

No files available

Metadata only record. There are no files for this record.