Scaling of flow curves

Comparison between experiments and simulations

Journal Article (2018)
Authors

Riande I. Dekker (Universiteit van Amsterdam)

Maureen Dinkgreve (Universiteit van Amsterdam)

Henri de Cagny (Universiteit van Amsterdam, Unilever Research Laboratories)

D.J. Koeze (TU Delft - Engineering Thermodynamics)

B.P. Tighe (TU Delft - Engineering Thermodynamics)

Daniel Bonn (Universiteit van Amsterdam)

Research Group
Engineering Thermodynamics
To reference this document use:
https://doi.org/10.1016/j.jnnfm.2018.08.006
More Info
expand_more
Publication Year
2018
Language
English
Research Group
Engineering Thermodynamics
Volume number
261
Pages (from-to)
33-37
DOI:
https://doi.org/10.1016/j.jnnfm.2018.08.006

Abstract

Yield-stress materials form an interesting class of materials that behave like solids at small stresses, but start to flow once a critical stress is exceeded. It has already been reported both in experimental and simulation work that flow curves of different yield-stress materials can be scaled with the distance to jamming or with the confining pressure. However, different scaling exponents are found between experiments and simulations. In this paper we identify sources of this discrepancy. We numerically relate the volume fraction with the confining pressure and discuss the similarities and differences between rotational and oscillatory measurements. Whereas simulations are performed in the elastic response regime close to the jamming transition and with very small amplitudes to calculate the scaling exponents, these conditions are hardly possible to achieve experimentally. Measurements are often performed far away from the critical volume fraction and at large amplitudes. We show that these differences are the underlying reason for the different exponents for rescaling flow curves.

No files available

Metadata only record. There are no files for this record.