Silicon Carbide Based Nanotubes as a Sensing Material for Gaseous H2SiCl2

Journal Article (2022)
Author(s)

Mohsen Doust Doust Mohammadi (University of Tehran)

Hewa Y. Abdullah (Tishk International University)

Somnath Bhowmick (The Cyprus Insitute)

G. Biskos (TU Delft - Atmospheric Remote Sensing, The Cyprus Insitute)

Research Group
Atmospheric Remote Sensing
Copyright
© 2022 Mohsen Doust Mohammadi, Hewa Y. Abdullah, Somnath Bhowmick, G. Biskos
DOI related publication
https://doi.org/10.1007/s12633-022-02010-0
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 Mohsen Doust Mohammadi, Hewa Y. Abdullah, Somnath Bhowmick, G. Biskos
Research Group
Atmospheric Remote Sensing
Issue number
1
Volume number
15
Pages (from-to)
177-186
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The ability of carbon- and silicon-based nanotubes, including pure carbon, silicon carbide, and Ge-doped silicon carbide nanotubes (CNT, SiCNT, SiCGeNT, respectively), for sensing highly toxic dichlorosilane (H2SiCl2) are investigated using quantum chemistry calculations. The intermolecular interactions between the sensing material and the gas molecule have been investigated with the density functional theory calculations with a functional that includes dispersion terms. The selected method employed is B3LYP-D3 (GD3BJ)/6-311G(d), while other functionals including PBE0, ωB97XD, and M06-2X have been used for comparison. The quantum theory of atoms in molecules (QTAIM) analysis is employed to check the type of intermolecular interactions. Natural bond orbital (NBO) calculations have been used to deduce the bond orders. The findings of this work indicate that the adsorption of the H2SiCl2 is a physisorption process, which is very desirable for its function as a sensing element. The Ge-doped nanotube offers maximum adsorption energy in comparison to CNT and SiCNT.

Files

S12633_022_02010_0.pdf
(pdf | 3.26 Mb)
- Embargo expired in 01-07-2023
License info not available