Inverse design of copolymers including stoichiometry and chain architecture

Journal Article (2024)
Author(s)

G. Vogel (TU Delft - Pattern Recognition and Bioinformatics)

J.M. Weber (TU Delft - Pattern Recognition and Bioinformatics)

Research Group
Pattern Recognition and Bioinformatics
DOI related publication
https://doi.org/10.1039/D4SC05900J
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Pattern Recognition and Bioinformatics
Issue number
3
Volume number
16 (2025)
Pages (from-to)
1161-1178
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The demand for innovative synthetic polymers with improved properties is high, but their structural complexity and vast design space hinder rapid discovery. Machine learning-guided molecular design is a promising approach to accelerate polymer discovery. However, the scarcity of labeled polymer data and the complex hierarchical structure of synthetic polymers make generative design particularly challenging. We advance the current state-of-the-art approaches to generate not only repeating units, but monomer ensembles including their stoichiometry and chain architecture. We build upon a recent polymer representation that includes stoichiometries and chain architectures of monomer ensembles and develop a novel variational autoencoder (VAE) architecture encoding a graph and decoding a string. Using a semi-supervised setup, we enable the handling of partly labelled datasets which can be beneficial for domains with a small corpus of labelled data. Our model learns a continuous, well organized latent space (LS) that enables de novo generation of copolymer structures including different monomer stoichiometries and chain architectures. In an inverse design case study, we demonstrate our model for in silico discovery of novel conjugated copolymer photocatalysts for hydrogen production using optimization of the polymer's electron affinity and ionization potential in the latent space.