Speckle Denoising of Dynamic Contrast-enhanced Ultrasound using Low-rank Tensor Decomposition
M. Çalış (TU Delft - Signal Processing Systems)
Massimo Mischi (Eindhoven University of Technology)
A. J. van der Veen (TU Delft - Signal Processing Systems)
Borbála Hunyadi (TU Delft - Signal Processing Systems)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Dynamic contrast-enhanced ultrasound (DCEUS) is an imaging modality for assessing microvascular perfusion and dispersion kinetics. However, the presence of speckle noise may hamper the quantitative analysis of the contrast kinetics. Common speckle denoising techniques based on low-rank approximations typically model the speckle noise as white Gaussian noise (WGN) after the log transformation and apply matrix-based algorithms. We address the high dimensionality of the 4D DCEUS data and apply low-rank tensor decomposition techniques to denoise speckles. Although there are many tensor decompositions that can describe low rankness, we limit our research to multilinear rank and tubal rank. We introduce a gradient-based extension of the multilinear singular value decomposition to model low multilinear rankness, assuming that the log-transformed speckle noise follows a Fisher-tippet distribution. In addition, we apply an algorithm based on tensor singular value decomposition to model low tubal rankness, assuming that the log-transformed speckle noise is WGN with sparse outliers. The effectiveness of the methods is evaluated through simulations and phantom studies. Additionally, the tensor-based algorithms’ real-world performance is assessed using DCEUS prostate recordings. Comparative analyses with existing DCEUS denoising literature are conducted, and the algorithms’ capabilities are showcased in the context of prostate cancer classification. The addition of Fisher-tippet distribution did not improve the results of tr-MLSVD in the in vivo case. However, most cancer markers are better distinguishable when using a tensor denoising technique than state-of-the-art approaches.