Optimized Speed Trajectories for Cyclists, Based on Personal Preferences and Traffic Light Information-A Stochastic Dynamic Programming Approach
Azita Dabiri (TU Delft - Team Azita Dabiri)
Andreas Hegyi (TU Delft - Transport and Planning)
Serge Hoogendoorn (TU Delft - Transport and Planning)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The literature on green mobility and eco-driving in urban areas has burgeoned in recent years, with special attention to using infrastructure to vehicle (I2V) communications to obtain optimal speed trajectory which minimize the economic and environmental costs. This article shares the concept with these studies but turns the spotlight on cyclists. It examines the problem of finding optimal speed trajectory for a cyclist in signalised urban areas. Unlike the available studies on motorised vehicles which predominantly designed for pre-defined, fixed traffic lights timing, this article uses an algorithm based on stochastic dynamic programming to explicitly address uncertainty in traffic light timing. Moreover, through a comprehensive set of simulation experiments, the article examines the impact of the speed advice's starting point as well as the cyclist's willingness for changing his/her speed on enhancing the performance. The proposed approach targets various performance metrics such as minimising the total travel time, energy consumption, or the probability of stopping at a red light. Hence, the resulting speed advice can be tailored according to the personal preferences of each cyclist. In a simulation case study, the results of the proposed approach is also compared with an existing approach in the literature.