Measurements and discrimination of drones and birds with a multi-frequency multistatic radar system
Riccardo Palamà (Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA))
F. Fioranelli (TU Delft - Microwave Sensing, Signals & Systems)
Matthew Ritchie (University College London)
Michael Inggs (University of Cape Town)
Simon Lewis (University of Cape Town)
Hugh Griffiths (University College London)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This article presents the results of a series of measurements of multistatic radar signatures of small UAVs at L- and X-bands. The system employed was the multistatic multiband radar system, NeXtRAD, consisting of one monostatic transmitter-receiver and two bistatic receivers. NeXtRAD is capable of recording simultaneous bistatic and monostatic data with baselines and two-way bistatic range of the order of a few kilometres. The paper presents an empirical analysis with range-time plots and micro-Doppler signatures of UAVs and birds of opportunity recorded at several hundred metres of distance. A quantitative analysis of the overall signal-to-noise ratio is presented along with a comparison between the power of the signal scattered from the drone body and blades. A simple study with empirically obtained features and four supervised-learning classifiers for binary drone versus non-drone separation is also presented. The results are encouraging with classification accuracy consistently above 90% using very simple features and classification algorithms.