Effects of the assumption on ties in unseen parts of a ranking

What will happen if we relax the assumption that ties do not occur in unseen parts?

Bachelor Thesis (2024)
Author(s)

L.N.W. Roels (TU Delft - Electrical Engineering, Mathematics and Computer Science)

Contributor(s)

Julián Urbano – Mentor (TU Delft - Multimedia Computing)

Matteo Corsi – Mentor (TU Delft - Multimedia Computing)

M.L. Molenaar – Graduation committee member (TU Delft - Computer Graphics and Visualisation)

Faculty
Electrical Engineering, Mathematics and Computer Science
More Info
expand_more
Publication Year
2024
Language
English
Graduation Date
25-06-2024
Awarding Institution
Delft University of Technology
Project
['CSE3000 Research Project']
Programme
['Computer Science and Engineering']
Faculty
Electrical Engineering, Mathematics and Computer Science
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Rankings are more present in our daily lives than most people realize. Whether you are browsing Netflix and getting movies or shows based on your previous likes or dislikes, or you want to compare search engine results. To use rankings in the field of Computer Science a rank similarity is needed. Rank-Biased Overlap is one of those. It is top-weighted, can be used on uneven rankings, and when only a part of the ranking is known. A well-known problem in rank similarity measures is ties. There have been some ways of dealing with ties proposed since RBO was introduced. These ways have been shown to be promising but they only relate to the seen part. The unseen part of rankings is still a new concept with little research done about it. This paper aims to change that a bit. First, a full explanation is given of the three variations of dealing with ties. Then using these variants we show how the assumption that no ties exist in the unseen part affects these variants. Also, the current extrapolation method is researched as there is also a big influence of the above-mentioned assumption. We then use simulated data to give a clear data visualization to show how the theory relates to practice. We have tried to be clear and concise with our explanations and data visualizations so future researchers can use this paper to improve and progress RBO in the world of rank similarity measures.

Files

Ties_in_Unseen_Rankings.pdf
(pdf | 0.606 Mb)
License info not available