Quantifying frequency containment reserve using cross-entropy frequency-constrained contingency-state-analysis model

Journal Article (2023)
Author(s)

Yiping Yuan (Xi’an Jiaotong University)

Zhou Liu (Siemens Gamesa Renewable Energy)

Zhe Chen (Aalborg University)

Kim Hoej Jensen (Siemens Gamesa Renewable Energy)

Marjan Popov (TU Delft - Intelligent Electrical Power Grids)

Research Group
Intelligent Electrical Power Grids
DOI related publication
https://doi.org/10.1016/j.ijepes.2022.108705
More Info
expand_more
Publication Year
2023
Language
English
Research Group
Intelligent Electrical Power Grids
Volume number
145
Pages (from-to)
1-12
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

With the increasing penetration of converter-interfaced generators, the frequency containment reserve (FCR) from conventional generators keeps going down, leading to a potential risk of frequency instability under contingencies. Consequently, Converter-interfaced generators are required to provide FCR and participate in the corrective rescheduling. Nevertheless, how to assess the FCR and quantify the adequacy of FCR under contingencies is a big challenge in modern new power system. To address this challenge, a cross-entropy-based frequency-constrained contingency-state-analysis (FC-CSA) model is proposed in this paper. Notably, both frequency control (FC) of units (i.e., conventional synchronous generators and converter-interfaced generators), and under frequency load shedding (UFLS) are incorporated in the primary frequency response. Then a unified system frequency response (SFR) function representing frequency dynamic is derived. This SFR function is extracted and reformulated as a group of mixed-integer linear constraints and participates in the traditional CSA model. Moreover, a set of frequency dynamic indexes, i.e., Expectation of UFLS risk, Expectation of FCR from conventional and converter-interfaced generators, is extended to depict the FCR that the power system requires. These indexes are calculated by the FC-CSA in a cross-entropy-based monte carlo simulation (CE-MCs). Case studies on a modified IEEE 6-bus test system and IEEE 118-bus test system are carried out to demonstrate the effectiveness of the proposed FC-CSA model.

Files

1_s2.0_S0142061522007013_main_... (pdf)
(pdf | 3.24 Mb)
- Embargo expired in 20-04-2023
License info not available