Fractal disperse hydrogen sorption kinetics in spark discharge generated Mg/NbOx and Mg/Pd nanocomposites

More Info
expand_more
Publication Year
2011
Copyright
© 2011 The Author(s)
Related content
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Isothermal hydrogen desorption of spark discharge generated Mg/NbOx and Mg/Pd metal hydride nanocomposites is consistently described by a kinetic model based on multiple reaction rates, in contrast to the Johnson-Mehl-Avrami-Kolmogorov [M. Avrami, J. Phys. Chem. 9, 177 (1941); W. A. Johnson and R. F. Mehl, Trans. Am. Inst. Min., Metal. Eng. 135, 416 (1939); A. N. Kolmogorov, Izv. Akad. Nauk SSSR, Ser. Mat. 3, 355 (1937); F. Liu, F. Sommer, C. Bos, and E. J. Mittemeijer, Int. Mat. Rev. 52, 193 (2007)] model which is commonly applied to explain the kinetics of metal hydride transformations. The broad range of reaction rates arises from the disperse character of the particle size and the dendritic morphology of the samples. The model is expected to be generally applicable for metal hydrides which show a significant variation in particle sizes, in configuration and/or chemical composition of local surroundings of the reacting nanoparticles.

Files

License info not available