Fourier Multipliers in Banach Function Spaces with UMD Concavifications
Alex Amenta (TU Delft - Analysis)
Emiel Lorist (TU Delft - Analysis)
Mark Veraar (TU Delft - Analysis)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We prove various extensions of the Coifman-Rubio de Francia-Semmes multiplier theorem to operator-valued multipliers on Banach function spaces. Our results involve a new boundedness condition on sets of operators which we call $ {\ell ^{r}(\ell ^{s})}$-boundedness, which implies $ \mathcal {R}$-boundedness in many cases. The proofs are based on new Littlewood-Paley-Rubio de Francia-type estimates in Banach function spaces which were recently obtained by the authors.