Muscle coordination retraining inspired by musculoskeletal simulations reduces knee contact force

Journal Article (2022)
Author(s)

Scott Uhlrich (Stanford University, VP Palo Alto Healthcare System)

Rachel W. Jackson (Stanford University)

Ajay Seth (TU Delft - Biomechatronics & Human-Machine Control)

Julie A. Kolesar (Stanford University, VP Palo Alto Healthcare System)

Scott L. Delp (Stanford University)

Research Group
Biomechatronics & Human-Machine Control
Copyright
© 2022 Scott D. Uhlrich, Rachel W. Jackson, A. Seth, Julie A. Kolesar, Scott L. Delp
DOI related publication
https://doi.org/10.1038/s41598-022-13386-9
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 Scott D. Uhlrich, Rachel W. Jackson, A. Seth, Julie A. Kolesar, Scott L. Delp
Research Group
Biomechatronics & Human-Machine Control
Issue number
1
Volume number
12
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Humans typically coordinate their muscles to meet movement objectives like minimizing energy expenditure. In the presence of pathology, new objectives gain importance, like reducing loading in an osteoarthritic joint, but people often do not change their muscle coordination patterns to meet these new objectives. Here we use musculoskeletal simulations to identify simple changes in coordination that can be taught using electromyographic biofeedback, achieving the therapeutic goal of reducing joint loading. Our simulations predicted that changing the relative activation of two redundant ankle plantarflexor muscles-the gastrocnemius and soleus-could reduce knee contact force during walking, but it was unclear whether humans could re-coordinate redundant muscles during a complex task like walking. Our experiments showed that after a single session of walking with biofeedback of summary measures of plantarflexor muscle activation, healthy individuals reduced the ratio of gastrocnemius-to-soleus muscle activation by 25 ± 15% (p = 0.004, paired t test, n = 10). Participants who walked with this "gastrocnemius avoidance" gait pattern reduced late-stance knee contact force by 12 ± 12% (p = 0.029, paired t test, n = 8). Simulation-informed coordination retraining could be a promising treatment for knee osteoarthritis and a powerful tool for optimizing coordination for a variety of rehabilitation and performance applications.