Re-enactment simulation for buffer size optimization in semiconductor back-end production
Jelle Adan (Nexperia)
S. Sneijders (TU Delft - Intensified Reaction and Separation Systems)
Alp Akcay (Eindhoven University of Technology)
Ivo J.B.F. Adan (Eindhoven University of Technology)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In this work, we propose a re-enactment simulation-based optimization method to determine the minimal total buffer capacity in an assembly line required to meet a target throughput. A distinguishing feature is the use of real-time event traces, in a fast fluid flow simulation model. Employing real-time event traces avoids the necessity to make restrictive modeling assumptions. The fluid simulation is combined with a multi start search algorithm. To demonstrate its effectiveness, the method is applied to a real-world use case in lead frame based semiconductor back-end manufacturing. This use case considers an assembly line consisting of six machines, for which the proposed method determines optimal buffer size configurations within several minutes of computational time.