Establishing 3d numerical reservoir analogues
Modelling the formation of sand bodies in deltaic environments
More Info
expand_more
Abstract
The assessment and production of hydrocarbon resources incorporates geological models created from core and wireline well data, as well as seismic data. This data is spatially discrete but is used create a spatially continuous model. However, the heterogeneity within depositional environments is on a smaller spatial scale than the available data resolution. The field data is therefore supplemented with relevant analogue data, often from deposits which differ in various aspects from the actual reservoir being assessed. To improve the correlation between analogues and the reservoir being studied, it is proposed that 3D numerical analogues are used in addition to the current outcrop analogues. These 3D numerical analogues can be created through process based numerical modelling and can more closely match the conditions of the reservoir being studied. In this presentation we propose a workflow to create and implement 3D numerical outcrops. We go on to show an initial stage of a proof of concept for the workflow. It is shown that using the software Delf3D, it is possible to simulate the sand bodies found in deltaic deposits, which can later act as hydrocarbon reservoirs.