Optimizing ML Inference Queries Under Constraints
Ziyu Li (TU Delft - Web Information Systems)
W. Sun (TU Delft - Web Information Systems)
R. Hai (TU Delft - Web Information Systems)
A. Bozzon (TU Delft - Human-Centred Artificial Intelligence)
A Katsifodimos (TU Delft - Web Information Systems)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The proliferation of pre-trained ML models in public Web-based model zoos facilitates the engineering of ML pipelines to address complex inference queries over datasets and streams of unstructured content. Constructing optimal plan for a query is hard, especially when constraints (e.g. accuracy or execution time) must be taken into consideration, and the complexity of the inference query increases. To address this issue, we propose a method for optimizing ML inference queries that selects the most suitable ML models to use, as well as the order in which those models are executed. We formally define the constraint-based ML inference query optimization problem, formulate it as a Mixed Integer Programming (MIP) problem, and develop an optimizer that maximizes accuracy given constraints. This optimizer is capable of navigating a large search space to identify optimal query plans on various model zoos.