Sulfate reducing bacteria applied to domestic wastewater
Tessa P H Van Den Brand (KWR Water Research Institute)
Laura Snip (KWR Water Research Institute)
Luc Palmen (KWR Water Research Institute)
Paul Weij (Delfluent Services B.V.)
Jan Sipma (Paques B.V.)
Mark C M van Loosdrecht (TU Delft - BT/Environmental Biotechnology, KWR Water Research Institute)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The application of sulfate reducing bacteria (SRB) to treat municipal wastewater is seldom considered. For instance, due to low sludge yield it can reduce the amount of excess sludge produced significantly. Several studies, mainly at laboratory-scale, revealed that SRB can proliferate in artificial wastewater systems at temperatures of 20°C and lower. So far, the application of SRB in a domestic wastewater treatment plant has been limited. Therefore, this study evaluates the proliferation of SRB at pilot-scale in a moderate climate. This study revealed that SRB were present and active in the pilot fed with domestic wastewater at 13°C, and outcompete methanogens. Stable, smooth and well-settled granule formation occurred, which is beneficial for full-scale application. In the Netherlands the sulfate concentration is usually low (,500 mg/L), therefore the application of SRB seems challenging as sulfate is limiting. Additional measurements indicated the presence of other sulfur sources, therefore higher sulfur levels were available, which makes it possible to remove more than 75% of the chemical oxygen demand (excluding sulfide) based on SRB activity. The beneficial application of SRB to domestic wastewater treatment might therefore be valid for more locations than initially expected.