Sequential convex relaxation for robust static output feedback structured control
Reinier Doelman (TU Delft - Team Raf Van de Plas)
M. Verhaegen (TU Delft - Team Raf Van de Plas)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We analyse the very general class of uncertain systems that have Linear Fractional Representations (LFRs), and uncertainty blocks in a convex set with a finite number of vertices. For these systems we design static output feedback controllers. In the general case, computing a robust static output feedback controller with optimal performance gives rise to a bilinear matrix inequality (BMI). In this article we show how this BMI problem can be efficiently rewritten to fit in the framework of sequential convex relaxation, a method that searches simultaneously for a feasible controller and one with good performance. As such, our approach does not rely on being supplied with a feasible initial solution to the BMI. This sets it apart from methods that depend on a good initial, feasible starting point to progress from there using an alternating optimization scheme. In addition to using the proposed method, the controller matrices can be of a predetermined fixed structure. Alternatively, an L1 constraint can be easily added to the optimization problem as a convex variant of a cardinality constraint, in order to induce sparsity on the controller matrices.