CaptureBias

Supporting Media Scholars with Ambiguity-Aware Bias Representation for News Videos

Conference Paper (2018)
Author(s)

M. Jong (TU Delft - Web Information Systems)

P. Mavridis (Vrije Universiteit Amsterdam)

Lora Aroyo (Universiteit Leiden)

A Bozzon (TU Delft - Web Information Systems)

Jesse de Vos (Nederlands Instituut voor Beeld en Geluid)

Johan Oomen (Nederlands Instituut voor Beeld en Geluid)

Antoaneta Dimitrova (Universiteit Leiden)

Alec Badenoch (Universiteit Utrecht)

Research Group
Web Information Systems
Copyright
© 2018 M. de Jong, P. Mavridis, Lora Aroyo, A. Bozzon, Jesse de Vos, Johan Oomen, Antoaneta Dimitrova, Alec Badenoch
More Info
expand_more
Publication Year
2018
Language
English
Copyright
© 2018 M. de Jong, P. Mavridis, Lora Aroyo, A. Bozzon, Jesse de Vos, Johan Oomen, Antoaneta Dimitrova, Alec Badenoch
Research Group
Web Information Systems
Bibliographical Note
Accepted Author Manuscript@en
Volume number
2276
Pages (from-to)
32-40
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

In this project we explore the presence of ambiguity in textual and visual media and its influence on accurately understanding and
capturing bias in news. We study this topic in the context of supporting
media scholars and social scientists in their media analysis. Our focus
lies on racial and gender bias as well as framing and the comparison
of their manifestation across modalities, cultures and languages. In this
paper we lay out a human in the loop approach to investigate the role of
ambiguity in detection and interpretation of bias.

Files

Paper4.pdf
(pdf | 0.4 Mb)
License info not available