On power system automation

Synchronised measurement technology supported power system situational awareness

Doctoral Thesis (2020)
Author(s)

Matija Naglič (TU Delft - Intelligent Electrical Power Grids)

Research Group
Intelligent Electrical Power Grids
Copyright
© 2020 M. Naglic
More Info
expand_more
Publication Year
2020
Language
English
Copyright
© 2020 M. Naglic
Research Group
Intelligent Electrical Power Grids
ISBN (print)
978-94-6384-118-4
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This thesis aims to provide insight into the necessary power system operation and control developments to facilitate a sustainable, safe and reliable electric power supply now and in the future. The primary objective is to enhance the interconnected power system situational awareness with the aim of reinforcing the reliability of power systems. First, the thesis elaborates on the existing and emerging operational challenges of modern power systems and identifies the required power system developments to overcome them. Next, it focuses on state-of-the-art Synchronised Measurement Technology (SMT) supported Wide-area Monitoring Protection and Control (WAMPAC) of power systems. In this context, a cyber-physical experimental testbed for online evaluation of the emerging WAMPAC applications under realistic conditions is developed. Following, to fill the scientific gap between the IEEE Std. C37.118-2005 (communication part) and IEEE Std. C37.118.2-2011 specifications and their implementation, the MATLAB supported Synchro-measurement Application Development Framework is developed. Next, to improve situational awareness of power systems, two SMT-supported algorithms are proposed. The first algorithm is suitable for online detection of disturbances, observed as excursions in SMT measurements, in AC and HVDC power grids. Whereas the second algorithm is suitable for online identification of grouping changes of slow coherent generators in an interconnected power system during quasi-steady-state and the electromechanical transient period following a disturbance. Finally, further research directions towards the Control Room of Future are presented.

Files

License info not available