The Effect of Wind Stress on Seasonal Sea-Level Change on the Northwestern European Shelf
Tim H. J. Hermans (NIOZ Royal Netherlands Institute for Sea Research, TU Delft - Physical and Space Geodesy)
CA Katsman (TU Delft - Environmental Fluid Mechanics)
Carolina M. L. Camargo (NIOZ Royal Netherlands Institute for Sea Research, TU Delft - Physical and Space Geodesy)
Gregory G. Garner (The State University of New Jersey)
R. E. Kopp (The State University of New Jersey)
Aimée B. A. Slangen (NIOZ Royal Netherlands Institute for Sea Research)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Projections of relative sea level change (RSLC) are commonly reported at an annual mean basis. The seasonality of RSLC is often not considered, even though it may modulate the impacts of annual mean RSLC. Here, we study seasonal differences in twenty-first-century ocean dynamic sea level change (DSLC; 2081–2100 minus 1995–2014) on the Northwestern European Shelf (NWES) and their drivers, using an ensemble of 33 CMIP6 models complemented with experiments performed with a regional ocean model. For the high-end emissions scenario SSP5–8.5, we find substantial seasonal differences in ensemble mean DSLC, especially in the southeastern North Sea. For example, at Esbjerg (Denmark), winter mean DSLC is on average 8.4 cm higher than summer mean DSLC. Along all coasts on the NWES, DSLC is higher in winter and spring than in summer and autumn. For the low-end emissions scenario SSP1–2.6, these seasonal differences are smaller. Our experiments indicate that the changes in winter and summer sea level anomalies are mainly driven by regional changes in wind stress anomalies, which are generally southwesterly and east-northeasterly over the NWES, respectively. In spring and autumn, regional wind stress changes play a smaller role. We also show that CMIP6 models not resolving currents through the English Channel cannot accurately simulate the effect of seasonal wind stress changes on the NWES. Our results imply that using projections of annual mean RSLC may underestimate the projected changes in extreme coastal sea levels in spring and winter. Additionally, changes in the seasonal sea level cycle may affect groundwater dynamics and the inundation characteristics of intertidal ecosystems.