Tumour-educated platelets for breast cancer detection

biological and technical insights

Journal Article (2023)
Authors

Marte C. Liefaard (Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis)

Kat Moore (Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis)

Lennart Mulder (Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis)

Daan van den Broek (Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis)

Jelle Wesseling (Leiden University Medical Center, Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis)

Gabe S. Sonke (Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis)

L.F.A. Wessels (Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis, TU Delft - Pattern Recognition and Bioinformatics)

Matti Rookus (Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis)

Esther H. Lips (Nederlands Kanker Instituut - Antoni van Leeuwenhoek ziekenhuis)

Research Group
Pattern Recognition and Bioinformatics
Copyright
© 2023 Marte C. Liefaard, Kat S. Moore, Lennart Mulder, Daan van den Broek, Jelle Wesseling, Gabe S. Sonke, L.F.A. Wessels, Matti Rookus, Esther H. Lips
To reference this document use:
https://doi.org/10.1038/s41416-023-02174-5
More Info
expand_more
Publication Year
2023
Language
English
Copyright
© 2023 Marte C. Liefaard, Kat S. Moore, Lennart Mulder, Daan van den Broek, Jelle Wesseling, Gabe S. Sonke, L.F.A. Wessels, Matti Rookus, Esther H. Lips
Related content
Research Group
Pattern Recognition and Bioinformatics
Issue number
8
Volume number
128
Pages (from-to)
1572-1581
DOI:
https://doi.org/10.1038/s41416-023-02174-5
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Background: Studies have shown that blood platelets contain tumour-specific mRNA profiles tumour-educated platelets (TEPs). Here, we aim to train a TEP-based breast cancer detection classifier. Methods: Platelet mRNA was sequenced from 266 women with stage I–IV breast cancer and 212 female controls from 6 hospitals. A particle swarm optimised support vector machine (PSO-SVM) and an elastic net-based classifier (EN) were trained on 71% of the study population. Classifier performance was evaluated in the remainder (29%) of the population, followed by validation in an independent set (37 cases and 36 controls). Potential confounding was assessed in post hoc analyses. Results: Both classifiers reached an area under the curve (AUC) of 0.85 upon internal validation. Reproducibility in the independent validation set was poor with an AUC of 0.55 and 0.54 for the PSO-SVM and EN classifier, respectively. Post hoc analyses indicated that 19% of the variance in gene expression was associated with hospital. Genes related to platelet activity were differentially expressed between hospitals. Conclusions: We could not validate two TEP-based breast cancer classifiers in an independent validation cohort. The TEP protocol is sensitive to within-protocol variation and revision might be necessary before TEPs can be reconsidered for breast cancer detection.