Identification of the dynamics of time-varying phase aberrations from time histories of the point-spread function
Reinier Doelman (TU Delft - Team Raf Van de Plas)
Måns Klingspor (Linköping University)
Anders Hansson (Linköping University)
Johan Löfberg (Linköping University)
M.H.G. Verhaegen (TU Delft - Team Raf Van de Plas)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
To optimally compensate for time-varying phase aberrations with adaptive optics, a model of the dynamics of the aberrations is required to predict the phase aberration at the next time step. We model the time-varying behavior of a phase aberration, expressed in Zernike modes, by assuming that the temporal dynamics of the Zernike coefficients can be described by a vector-valued autoregressive (VAR) model. We propose an iterative method based on a convex heuristic for a rank-constrained optimization problem, to jointly estimate the parameters of the VAR model and the Zernike coefficients from a time series of measurements of the point-spread function (PSF) of the optical system. By assuming the phase aberration is small, the relation between aberration and PSF measurements can be approximated by a quadratic function. As such, our method is a blind identification method for linear dynamics in a stochastic Wiener system with a quadratic nonlinearity at the output and a phase retrieval method that uses a time-evolution-model constraint and a single image at every time step.