Visual Attention of Pedestrians in Traffic Scenes
A Crowdsourcing Experiment
P. Bazilinskyy (TU Delft - Human-Robot Interaction)
D. Dodou (TU Delft - Medical Instruments & Bio-Inspired Technology)
J.C.F. de Winter (TU Delft - Human-Robot Interaction)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
In a crowdsourced experiment, the effects of distance and type of the approaching vehicle, traffic density, and visual clutter on pedestrians’ attention distribution were explored. 966 participants viewed 107 images of diverse traffic scenes for durations between 100 and 4000 ms. Participants’ eye-gaze data were collected using the TurkEyes method. The method involved briefly showing codecharts after each image and asking the participants to type the code they saw last. The results indicate that automated vehicles were more often glanced at than manual vehicles. Measuring eye gaze without an eye tracker is promising.