Flow compensation in a MEMS dual-thermal conductivity detector for hydrogen sensing in natural gas
G. de Graaf (TU Delft - Electronic Instrumentation)
A.N. Abarca (TU Delft - Electronic Instrumentation)
R. F. Wolfenbuttel (TU Delft - Electronic Instrumentation)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Conventional thermal conductivity detectors (TCDs) demonstrate a flow dependence. The approach presented here to reduce the flow dependence is based on the on-line flow compensation using two thin-film sensors on membranes in parallel on the same chip that are differentially operated. These are laterally identically, but with a different depth of the detection chamber, resulting in different quasi-static sensitivities to the thermal conductivity of the sample gas. The effects of conduction and convection in the structure have been studied using COMSOL Multiphysics. First prototypes have been fabricated and are presently tested.