Improving global digital elevation models using space-borne GEDI and ICESat-2 LiDAR altimetry data
Omer Gokberk Narin (TU Delft - Optical and Laser Remote Sensing, Afyon Kocatepe University)
Saygin Abdikan (Hacettepe University)
Mevlut Gullu (Afyon Kocatepe University)
R.C. Lindenbergh (TU Delft - Optical and Laser Remote Sensing)
FB Sanli (Yildiz Technical University)
Ibrahim Yilmaz (Afyon Kocatepe University)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Open source Global Digital Elevation Models (GDEMs) serve as an important base for studies in geosciences. However, these models contain vertical errors due to various reasons. In this study, data from two Satellite LiDAR altimetry systems, GEDI and ICESat-2, were used to improve the vertical accuracy of GDEMs. Three different machine learning methods, namely an Artificial Neural Network (ANN), Extreme Gradient Boosting (XGBoost), and a Convolutional Neural Network (CNN), were employed to improve existing DEM data with satellite LiDAR data. The methodology was tested in five areas with varying characteristics. Ground control data were selected from high accuracy DEMs generated from Airborne LiDAR and GNSS data. The use of ANN method improved the vertical accuracy of SRTM data from 6.45 to 3.72 m in Test area-4. Similarly, the CNN method demonstrated an improvement in the vertical accuracy of bare ground SRTM data increasing from 3.4 to 0.6 m in Test area-4. In Test area-5, the ANN method improved the vertical accuracy of SRTM data with slopes between 30 and 60%, increasing from 3.8 to 0.5 m. Notably, the results underscore the successful improvement of GDEMs across all test areas.