Effect of temperature on foam flow in porous media

Journal Article (2016)
Author(s)

L Kapetas

S.Y.F. Vincent Bonnieu (Shell Global Solutions International B.V., TU Delft - Reservoir Engineering)

S Danelis

W.R. Rossen (TU Delft - Reservoir Engineering)

Rouhi Farajzadeh (Shell Global Solutions International B.V., TU Delft - Reservoir Engineering)

AA Eftekhari

SR Mohd Shafian (Petronas Research)

RZ Kamarul Bahrim (Petronas Research)

Research Group
Reservoir Engineering
Copyright
© 2016 L. Kapetas, S.Y.F. Vincent-Bonnieu, S Danelis, W.R. Rossen, R. Farajzadeh, A.A. Eftekhari, SR Mohd Shafian, RZ Kamarul Bahrim
DOI related publication
https://doi.org/10.1016/j.jiec.2016.02.001
More Info
expand_more
Publication Year
2016
Language
English
Copyright
© 2016 L. Kapetas, S.Y.F. Vincent-Bonnieu, S Danelis, W.R. Rossen, R. Farajzadeh, A.A. Eftekhari, SR Mohd Shafian, RZ Kamarul Bahrim
Research Group
Reservoir Engineering
Volume number
36
Pages (from-to)
229-237
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Foam can increase sweep efficiency within a porous medium, which is useful for oil-recovery processes[1]. The flow of foam in porous media is a complex process that depends on properties like permeability, porosity and surface chemistry, but also temperature. Although the surface activity of surfactants as a function of temperature is well described at the liquid/liquid or liquid/ gas interface, data on the effect of temperature on foam stability is limited, especially in porous media. In this work, we tested a surfactant (AOS) at different temperatures, from 20°C to 80°C, in a sandstone porous medium with co-injection of foam. The pressure gradient, or equivalently the apparent viscosity, was measured in steady-state experiments. The core-flood experiments showed that the apparent viscosity of the foam decreased by 50% when the temperature increased to 80°C. This effect correlates with the lower surface tension at higher temperatures. These results are compared to bulk foam experiments, which show that at elevated temperatures foam decays and coalesces faster. This effect, however, can be attributed to the faster drainage at high temperature, as a response to the reduction in liquid viscosity, and greater film permeability leading to faster coarsening. Our results using the STARS foam model show that one cannot fit foam-model parameters to data at one temperature and apply the model at other temperatures, even if one accounts for the change in fluid properties (surface tension and liquid viscosity) with temperature. Experiments show an increase in gas mobility in the low-quality foam regime with increasing temperature that is inversely proportional to the decrease in gas-water surface tension. In the high-quality regime, results suggest that the water saturation at which foam collapses fmdry increases and Pc * decreases with increasing temperature.

Files

Temperature_effect_Rev1.pdf
(pdf | 1.96 Mb)
- Embargo expired in 30-11-2018