Fitness landscape analysis of dimensionally-aware genetic programming featuring feynman equations
M. Ðurasević (University of Zagreb)
Domagoj Jakobovic (University of Zagreb)
Marcella Scoczynski Ribeiro Martins (Federal University of Technology - Paraná (UTFPR))
S. Picek (TU Delft - Cyber Security)
Markus Wagner (University of Adelaide)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Genetic programming is an often-used technique for symbolic regression: finding symbolic expressions that match data from an unknown function. To make the symbolic regression more efficient, one can also use dimensionally-aware genetic programming that constrains the physical units of the equation. Nevertheless, there is no formal analysis of how much dimensionality awareness helps in the regression process. In this paper, we conduct a fitness landscape analysis of dimensionally-aware genetic programming search spaces on a subset of equations from Richard Feynman’s well-known lectures. We define an initialisation procedure and an accompanying set of neighbourhood operators for conducting the local search within the physical unit constraints. Our experiments show that the added information about the variable dimensionality can efficiently guide the search algorithm. Still, further analysis of the differences between the dimensionally-aware and standard genetic programming landscapes is needed to help in the design of efficient evolutionary operators to be used in a dimensionally-aware regression.