Space–time isogeometric topology optimization with additive manufacturing constraints
Li Yang (Dalian University of Technology, The University of Manchester)
Weiming Wang (University of Manchester)
Ye Ji (TU Delft - Numerical Analysis)
Chun Gang Zhu (Dalian University of Technology)
Charlie C.L. Wang (The University of Manchester)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
This paper presents a novel space–time isogeometric topology optimization (ITO) framework for additive manufacturing, enabling concurrent optimization of structural shape and fabrication sequence with accurate geometric representation. The method integrates a density distribution function with a pseudo-time function to optimize build sequences for complex structures, with an objective function that minimizes compliance under external loads and accounts for self-weight effects during fabrication. Density values and virtual heat conduction coefficients are defined at B-spline control points to serve as design variables. A heat conduction-based formulation is employed to generate the pseudo-time function so that prevents the generation of isolated or floating material regions. A layer thickness constraint, defined by the pseudo-time gradient, further enhances manufacturability. The approach has been validated in 2D and 3D examples, demonstrating its effectiveness in managing objectives of entire structure's stiffness and self-weight of intermediate structures.