Aircraft emissions of ultrafine particles characterized by real-world near runway measurements
J. Maes (TU Delft - Operations & Environment)
Spyros Bezantakos (The Cyprus Insitute)
L. Kavabata (TU Delft - Control & Operations)
G. Biskos (The Cyprus Insitute, TU Delft - Atmospheric Remote Sensing)
I.C. Dedoussi (University of Cambridge, TU Delft - Operations & Environment)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Aircraft emissions of (ultra)fine particles during landing and take-off operations pose increasing human health hazards for airport employees and near-airport communities. Measurements of in-operation aircraft are therefore crucial for characterizing real-world aircraft emissions, and their variability. In this work, we develop an approach that enables the gathering of large quantities of data on real-world aircraft-specific emissions. We use three types of portable PM sensors located ca. 200 m downwind of an operational runway at Amsterdam Airport Schiphol, over different seasons, to characterize the plumes from ca. 500 specific operations covering most aircraft types of the global flying fleet. High concentration peaks (in the order of 106 particles/cm3) of sub-25 nm particles are observed in the near field. While departure plumes exhibit higher particle number concentrations than arrival plumes, the values do not necessarily scale with aircraft size or engine thrust rating. We find large variability among aircraft types and engine models, highlighting the importance of incorporating real-world observations when assessing the impacts of aviation on the atmospheric composition and human health.