Augmented embedding of dissimilarity data into (pseudo-)Euclidean spaces

Conference Paper (2006)
Author(s)

A Harol (TU Delft - Multimedia Computing)

EM Pekalska (TU Delft - Multimedia Computing)

S Verzakov (TU Delft - Multimedia Computing)

Bob Duin (TU Delft - Multimedia Computing)

Multimedia Computing
More Info
expand_more
Publication Year
2006
Multimedia Computing
Pages (from-to)
613-621

Abstract

Pairwiseproximitiesdescribethepropertiesofobjectsintermsoftheirsimilarities.Byusingdi¿erentdistance-basedfunctionsonemayencodedi¿erentcharacteristicsofagivenproblem.However,tousetheframeworkofstatisticalpatternrecognitionsomevectorrepresentationshouldbeconstructed.Oneofthesimplestwaystodothatistode¿neanisometricembeddingtosomevectorspace.Inthiswork,wewillfocusonalinearembeddingintoa(pseudo-)Euclideanspace.
Thisisusuallywellde¿nedfortrainingdata.Someinadequacy,however,appearswhenprojectingnewortestobjectsduetotheresultingprojectionerrors.Inthispaperweproposeanaugmentedembeddingalgorithmthatenlargesthedimensionalityofthespacesuchthattheresultingprojectionerrorvanishes.Ourpreliminaryresultsshowthatitmayleadtoabetterclassi¿cationaccuracy,especiallyfordatawithhighintrinsicdimensionality.

No files available

Metadata only record. There are no files for this record.