Augmented embedding of dissimilarity data into (pseudo-)Euclidean spaces
A Harol (TU Delft - Multimedia Computing)
EM Pekalska (TU Delft - Multimedia Computing)
S Verzakov (TU Delft - Multimedia Computing)
Bob Duin (TU Delft - Multimedia Computing)
More Info
expand_more
Abstract
Pairwiseproximitiesdescribethepropertiesofobjectsintermsoftheirsimilarities.Byusingdi¿erentdistance-basedfunctionsonemayencodedi¿erentcharacteristicsofagivenproblem.However,tousetheframeworkofstatisticalpatternrecognitionsomevectorrepresentationshouldbeconstructed.Oneofthesimplestwaystodothatistode¿neanisometricembeddingtosomevectorspace.Inthiswork,wewillfocusonalinearembeddingintoa(pseudo-)Euclideanspace.
Thisisusuallywellde¿nedfortrainingdata.Someinadequacy,however,appearswhenprojectingnewortestobjectsduetotheresultingprojectionerrors.Inthispaperweproposeanaugmentedembeddingalgorithmthatenlargesthedimensionalityofthespacesuchthattheresultingprojectionerrorvanishes.Ourpreliminaryresultsshowthatitmayleadtoabetterclassi¿cationaccuracy,especiallyfordatawithhighintrinsicdimensionality.
No files available
Metadata only record. There are no files for this record.