Clustering-based methodology for estimating bicycle accumulation levels on signalized links

A case study from the Netherlands

More Info
expand_more

Abstract

The number of queued bicycles on a signalised link is crucial information for the adoption of intelligent transport systems, aiming at a better management of cyclists in cities. An unsupervised machine learning methodology is deployed to produce estimations of accumulation levels based on data retrieved from a bicycle street of the Netherlands. The use of a clustering-based approach, combined with a conceptual insight into the bicycle accumulation process and various data sources, makes the applied methodology less dependent on sensor errors. This clustering-based methodology is a first step in bicycle accumulation estimation and clearly identifies levels of cyclists accumulated in front of a traffic light.

Files